Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

نویسندگان

  • Joongoo Lee
  • Arnold J. Boersma
  • Marc A. Boudreau
  • Stephen Cheley
  • Oliver Daltrop
  • Jianwei Li
  • Hiroko Tamagaki
  • Hagan Bayley
چکیده

Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous observation of the stochastic motion of an individual small-molecule walker

Motion--whether it the ability to change shape, rotate or translate--is an important potential asset for functional nanostructures. For translational motion, a variety of DNA-based and small-molecule walkers have been created, but observing the translational motion of individual molecules in real time remains a significant challenge. Here, we show that the movement of a small-molecule walker al...

متن کامل

Single-Molecule Reaction Chemistry in Patterned Nanowells

A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through ...

متن کامل

Dynamic covalent single chain nanoparticles based on hetero Diels-Alder chemistry.

We introduce the fully reversible folding of single chain nanoparticles (SCNPs) based on covalent hetero Diels-Alder (HDA) chemistry. A cyclopentadiene (Cp)-protected cyanodithioester (CDTE) monomer is designed and copolymerized with methyl methacrylate (MMA) via RAFT polymerization. The polymer chains are folded and subsequently unfolded by exploiting the reversible nature of the HDA reaction.

متن کامل

Small molecule control of chromatin remodeling.

Control of cellular transcriptional programs is based on reversible changes in chromatin conformation that affect access of the transcriptional machinery to specific gene promoters. Chromatin conformation is in turn controlled by the concerted effects of reversible, covalent modification of the DNA and histone components of chromatin, along with topographical changes in DNA-histone interactions...

متن کامل

Self-Assembly Can Direct Dynamic Covalent Bond Formation toward Diversity or Specificity

With the advent of reversible covalent chemistry the study of the interplay between covalent bond formation and noncovalent interactions has become increasingly relevant. Here we report that the interplay between reversible disulfide chemistry and self-assembly can give rise either to molecular diversity, i.e., the emergence of a unprecedentedly large range of macrocycles or to molecular specif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016